Search results

Search for "metal oxides" in Full Text gives 199 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • employ the properties of transition metals and metal oxides (e.g., cobalt, iron, cerium, and gold), which can generate a cycle of reduction and oxidation stages [20][21][22][23]. Among these metal oxides, cerium oxide-based nanomaterials have been deeply studied with regard to the mechanisms of CAT
PDF
Album
Review
Published 12 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • . In this regard, radio frequency (rf) sputter deposition is one of the preferred choices as an industry-compatible method to grow WOx thin films [2][19][20][21]. Apart from thin films, nanostructured metal oxides generally possess superior electrochemical properties compared to their bulk counterparts
  • reduced in nature. This explains the observed low work function values of the films, which are mainly due to the presence of a high concentration of OV in the same (see XPS results). Greiner et al. have pointed out that a higher work function can be achieved in metal oxides in fully oxidized form compared
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024
Graphical Abstract
  • well as in biological systems. Since the cell membrane is negatively charged, the interaction between NPs and cell membrane or organelles can be highly influenced by the zeta potential. There is an increased interest in integrating data on metal oxides in the field of nanotoxicology that would be able
  • potential of the MeOx NPs in the cell damage dataset (dataset II), which lacks the zeta potential information (imputation of sparse data). The zeta potential was used as a descriptor in the model development along with the PT descriptors. Although the solvents used for testing metal oxides in both datasets
  • using this simple tool. This means that we were able to make predictions for untested metal oxides with great confidence. QSPR model for zeta potential The zeta potential is the key parameter from the regulatory point and can directly affect the NPs’ behavior in solution and their interaction with
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • the hydrogel contributes to the improvement of the electronic conductivity of weakly conductive electrocatalysts, such as metal oxides, ultimately affecting their catalytic efficiency and thus reducing the overpotential of the oxygen evolution reaction (OER) process [46]. In this work, we suspended
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • refrigeration compressors are metal oxides and carbon-based nanoparticles [11][12]. It is emphasized that both kinds of nanoparticles have positive effects on system performance. Krishnan et al. [13]. examined the effects of addition of metal oxide nanoparticles of Al2O3, SiO2, ZrO2, and carbon-based
  • reporting improvement in compressor performance are given in Table 1. Accordingly, it can be noted that the compressor energy consumption reduces mediately 30% with the use of nanolubricants. The literature shows that metal oxides and carbon-based nanoparticles are mainly preferred in nanolubricants used in
PDF
Album
Full Research Paper
Published 02 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • additional peroxidase substrates in LFAs increased the detection limit from the nanogram to the picogram level [16][17]. Various tracer elements have been developed to increase the sensitivity of an assay, including noble metal nanomaterials, metal oxides, plasmonic nanostructures, carbon-based materials
  • properties, that is, plasmonic materials (e.g., Au, Ag, and Pt), semiconductor materials (e.g., transition metal oxides, transition metal chalcogenides, and transition metal dichalcogenides), carbon-based nanomaterials (such as graphene oxide and carbon nanotubes), and polymer nanomaterials [33][34] (Figure
PDF
Album
Review
Published 04 Oct 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • attention due to their widespread applications in different areas, and they are continually designed to yield certain desired properties [1]. With the uninterrupted development of new NPs, engineered nanoparticles in the form of metal oxide nanoparticles are becoming a new area of research. Metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • stress within biological systems [11]. Nanoceria in plant systems Nanoceria acts as colloids in aqueous environments, in the soil near plant root systems, and within bodily fluids. Acetic, citric, lactic, succinic, and tartaric acid secreted from plant roots are known to complex with metals/metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • devices. The most often employed nanomaterials for electrochemical sensors are divided into four categories based on their chemical makeup: (i) metal oxides and metal-based materials (including MOF), (ii) dendrimers and polymer-based, (iii) carbonaceous materials, and (iv) hybrids or composites. Because
  • oxides) [63][64][65][66][67][68][69]. This is motivated by their large surface area, which can facilitate the loading of nanoparticles. Additionally, MOFs have been converted into their electrochemically active derivatives, such as mesoporous carbon composites and porous metal oxides, to achieve an
  • , which lowers their electrochemical detection performance [64]. Researchers have focused on various research efforts to improve the conductivity and amplify the electrical signals of MOFs by combining them with other highly conductive materials (such as carbon materials, metal nanoparticles, or metal
PDF
Album
Review
Published 01 Jun 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • friendly nature [11]. Even though transition-metal-based catalysts still suffer from low surface areas [12], dissolution and aggregation of metallic phase and metal oxides during the active OER process occurs [13]. Hence, Ni-, Fe- and/or Co-based catalysts have been synthesized as hybrid catalysts with
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • semiconductor as well as the redox levels of the substrate [11][21]. One of the main barriers preventing photocatalysis from being used in practical applications is the lack of suitable semiconductor photocatalysts. The commonly used nanometre-sized photocatalysts are metal oxides or sulfides (binary compounds
PDF
Album
Review
Published 03 Mar 2023

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • [4][5][6][7]. At present, QDSCs have reached 14.4% efficiency. In QDSCs, QDs are added to the metal oxides. Our earlier reports demonstrated that porous TiO2 nanofibers possess an enormous surface area for the maximum absorption of QDs [8][9][10]. For the past decades, binary or ternary QDs based on
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • are just van der Waals forces, which are weak [46]. Metal oxides such as TiO2 only have the O 2p orbital in their VB. In contrast , Bi-based oxide materials have an electronic structure in which O 2p and Bi 6s orbitals are paired in the VB. The bandgap of the semiconductor may be reduced to 3.0 eV
PDF
Album
Review
Published 11 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • discussed in detail. 2 Inorganic nanomaterials for MEG 2.1 Carbon nanotubes and carbon nanoparticles Among inorganic nanomaterials, carbon nanoparticles, carbon nanotubes, graphene, graphene oxide, metal oxides, and transition metal chalcogenides (TMDs) have been reported so far regarding applications in
PDF
Album
Review
Published 25 Oct 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • improved by adjusting the composition and type of solutions used in the liquid-phase exfoliation [15][16][17]. This theory has been successfully used for improving the exfoliation efficiency in several low-dimensional materials, such as carbon, graphene, metal oxides, and fibrous phosphorus. [18]. In a
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , selective, sensitive, and point-of-care (POC) analytical tools for monitoring environmental pollutants [2][11]. They can also detect residual OPs based on their electrocatalytic activity and affinity toward nanomaterials, such as nanoparticles, carbon nanomaterials, and metal oxides [11]. In a few reports
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • ]. Nanostructured materials are widely used as the working surface of the electrode [47][48][49]. The most common are transition metal nanoparticles [33][37][50][51][52][53][54], carbon nanotubes [8], metal oxides [55][56][57][58][59][60][61][62][63][64], graphene [32][33], and ordered mesoporous carbon [38][65][66
  • copper wire is observed. This process is similar to the conventional hydrothermal growth of most metal oxides described in previous studies [74][78][79]; however, this work has a fundamental difference: Cu-containing salts are not used in the synthesis process. The copper wire itself acts as the
  • healthcare to analyse changes in the concentration of H2O2 in biological fluids. Also, a promising option to study more complex analytes and to significantly increase the sensitivity is the use of this nanostructured CuO sensor as part of a multisensor system based on several types of metal oxides (e.g
PDF
Album
Full Research Paper
Published 03 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility
  • that they can circulate freely through the circulatory system and can penetrate tissues. Recently, TiO2 has received substantial recognition as one of the most extensively studied inorganic metal oxides in clinical research due to its unique nanosized features, intrinsic properties, biocompatibility
  • many years, titania has been employed as a colorant in food, cosmetics, and sunscreen. Moreover, Ti-containing metal alloys have been widely utilized in medical fields, because the have a higher biocompatibility than other vastly explored metal oxides such as silica, manganese oxide, and iron oxide
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • membranes due to the high surface area for particle adsorption. The hybridization of the electrospun membranes with additives improved the properties compared to pristine polymer membranes. GO, Fe2O3 and other metal oxides, HNTs, activated carbons, and zeolite are some of the frequently used additives for
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • predominantly point defects, that is, defects associated with one lattice point, such as cation or oxygen ion vacancies. OVs determine the physical and chemical properties of metal oxides. Figure 4a shows the natural crystal structure of SnO2 synthesized by vapor transport [48]. The (110) plane of rutile SnO2
  • Many attempts have been made to enhance the photocatalytic activity and take better advantage of SnO2 for the NOx abatement, including the combination with other metal oxides [70], organic semiconductors [71], or metallic nanomaterials [72] to form a heterojunction/composite photocatalyst, and self
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • properties to fit the targeted application in fields such as mechanics, optics, electronics, and biomaterials. Various types of coatings can be produced, from pure metals to metal oxides, nitrides, carbides, oxynitrides to metal alloys, or chemically more complex combinations such as high-entropy alloys [24
  • by a plasma generated in a mixture of argon with a molecular gas, by using dedicated mass flow controllers (MFC). Oxygen, nitrogen, methane, or hydrogen sulfide can be added to deposit metal oxides, nitrides, carbides, or sulfides, respectively. One example of such tailoring of the film chemistry is
  • alloy, see Figure 3b), and/or the implementation of reactive sputtering by adding a molecular gas (e.g., N2, O2 and CH4) allow for depositing a very large catalog of materials ranging from pure metals and alloys to metal oxides, nitrides, and other compounds. (ii) The product of pressure times target
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • correlate well with the electronegativity of the cation, such that a descriptor based upon the metal atom electronegativity may reflect catalytic activity due to ions release via dissolution, leading to toxicity via generation of reactive oxygen species (ROS) [60]. However, metal oxides may also result in
  • be successfully identified. Interestingly, it was found that comparable results could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. This descriptor has previously been used to model cytotoxicity of metal oxides [55][59], and other
  • is purely related to this simple descriptor providing limited information about the composition of the metal oxide core. Numerous studies have shown that a variety of intrinsic and extrinsic characteristics may influence the level of hazard associated with ENMs in general [65] and for metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • profile from NOR@IONPpH10 resembled that of free NOR where the release was rapid over the first 4–6 h and saturated out there after (Figure 5b, inset). The release of NOR from metal oxides, NiO, is found to follow first order rate kinetics thus we too fitted out drug release plots to a first order model
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • graphene oxide is required based on the device configuration. Shi et al. obtained similar results with an excellent luminance of 53000 cd/m2, demonstrating its explicit applicability in flexible OLED [64]. Combinations of graphene oxide with polymers and metal oxides have also been evaluated. Lin et al
  • a uniform thin film. Some of the commonly used polymers and metal oxides for ETL are PBD, PBD-PMMA, BND, ZnO, SnO2, and TiO2 [69][70][71]. Improvements in the device performance have been reported, when using polymer–MWNT nanocomposite-based ETL. For example, Fournet et al. have investigated the
  • doping-free and cost-effective, it can be operated using a single bias, and it emanates a narrow EL spectrum of ≈30 meV. Similarly, white light LED can also consist of CQD at the EML along with metal oxides in the charge transport layers [94]. In addition, a maximum EQE of 0.083% has been obtained from
PDF
Album
Review
Published 24 Sep 2021
Other Beilstein-Institut Open Science Activities